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1 Objectives

1. Time-frequency filtering of jammed GPS signals;

2. Carrier-phase ambiguity resolution in the presence of noise.

2 Description of Achievements of Objectives

Both Objectives have been accomplished. Results have been published in two refereed-journal papers and two
refereed conference-proceeding papers. Two final papers are being prepared for submission.

2.1 Time-frequency filtering of jammed GPS signals

For Test and Evaluation (T&E) systems on DOD test ranges, GPS has been used as the primary source of Time-
Space-Position Information (TSPI). The accuracy requirement for TSPI is in the sub-meter range, an order of
magnitude higher than that required for actual combat systems. To achieve the high accuracy, it is necessary to
use carrier-phase tracking of GPS signals. To emulate the characteristics of enemy GPS threats in the battlefield,
the TSPI test environment also includes GPS jamming sources.

The spread-spectrum structure of GPS signals provides inherent jamming tolerance for GPS receivers. After
despreading the received signal, the original satellite signals are collapsed into a narrow band around the carrier
frequency, while the jamming signals are spread due to the lack of correlation with the PN codes that encode
the satellite information. The portion of the spread jamming signal remaining within the frequency band of the
tracking loop enters the loop together with the satellite signal. Thus signal tracking can be stable only if the
jamming-to-signal ratio (JSR) is below the processing gain of the spreading code. In general, a JSR of greater
than 40dB will prevent the GPS receiver from tracking the satellite signals and estimating its own position. In a
hostile environment where jamming sites may be close to GPS users, a larger JSR is possible. How to achieve the
desired accuracy for a GPS-based TSPI system in the presence of strong jamming is an important but outstanding
problem.

In the project period, we developed a class of time-frequency filters based on the combination of the empirical-
mode decomposition (EMD) method and a general blind-source separation (BSS) algorithm. We obtained evi-
dence that the method is able to separate jamming from the GPS signal for JSR up to 45dB.

A forefront research area in signal processing is particle filters. The idea is to evolve the probability distri-
bution of a signal by using a large number of particles according to the system equations and some stochastic
processes, which is similar to Monte-Carlo simulation in physics and chemistry. Motivated by the fact that par-
ticle filters have been used widely in various types of signal-processing tasks, we applied this technique to GPS
positioning of moving objects in a jamming environment. In particular, we considered a class of regularized
particle filters, suitable for estimating the position of a moving object (e.g., a car) equipped with some proper
GPS C/A code receiver. Theoretically, a question of interest is how the estimation error depends on uncertainties
in the velocity measurement of the car and on the noise level in the GPS signal. Our analysis of the covariance
matrix constructed from simulated particles led to a formula relating this matrix to the covariance matrices of the
velocity and of the position error from least-squares processing of GPS pseudoranges. The formula was verified
by numerical simulations.

Practically, in order to address the problem of occasional but inevitable large errors (outliers) in the GPS
observations, we developed a robust particle-filtering technique. We demonstrated that the strategy is effective
for mitigating the effect of outliers for both Gaussian and non-Gaussian noise sources. Even in the absence of
outliers, our strategy can be useful for improving the positioning accuracy.
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2.2 Carrier-phase ambiguity resolution in the presence of noise

In order to determine a GPS receiver’s position, the following two pieces of information are needed: (1) the
satellite positions and (2) the traveling times of signals or the numbers of wavelength. With these, the receiver’s
position can be calculated by a simple trilateration procedure.

Information about the satellite positions is encoded in the GPS signal via the traditional spread-spectrum
method. The respective distances between satellites and the GPS receiver can be obtained by figuring out the
numbers of wavelengths of the carrier signals. The fractional parts of the wavelength can be measured by
phase-locked loop based detectors embedded in the receiver. The integer parts are ambiguous and these inte-
ger ambiguities must be resolved accurately to meet the T&E requirement of sub-meter precision in a jamming
environment. There exist several integer-parameter estimation methods, but how they perform under strong, non-
Gaussian noise or jamming is unknown. During the project period, we evaluated the performance of a state-of-art
integer-parameter estimation algorithm and explored improvements for use in a jamming environment.

Particle filters are naturally suitable for integer-parameter estimation with GPS carrier waves, as the system
equations can be obtained via straightforward geometrical arguments. During the project period we successfully
demonstrated the feasibility of this approach.

Publications

e M. Shah and Y.-C. Lai, “Performance of integer parameter estimation algorithm for GPS signals in noisy
environment,” pp. 166-174 in ION GNSS 17th International Technical Meeting of the Satellite Division,
Sept. 21-24, 2004, Long Beach, CA.

e L. Zhu, Y.-C. Lai, M. Shah, and S. Mahmood “Efficiency of carrier-phase integer ambiguity resolution for
precise GPS positioning in noisy environments,” Journal of Geodesy 81, 149-156 (2007).

e A. Rammohan, L. Huang, and Y.-C. Lai, “Integer ambiguity resolution using particle filters,” in prepara-
tion.

3 New Findings

3.1 Performance of integer least-squares method for ambiguity resolution with GPS signals in
the presence of noise

3.1.1 Background

In general, centimeter GPS positioning accuracy requires a precise tracking of the carrier phase that consists
of two parts: a directly measured fractional part (with measurement error at millimeter level) and an unknown
integer part, also called the integer ambiguity. The key to carrier-phase-based precise positioning is to resolve the
integer ambiguity, which is an extremely challenging task, particularly when large noise or jamming is present.



Existing ambiguity resolution techniques can be divided into several categories [1]. The first category in-
cludes the simplest techniques which use C/A-code or P-code pseudoranges directly to determine the ambiguities
of the corresponding carrier phase observations. The precision of the code range is not good enough to deter-
mine the integer ambiguities and inter frequency linear combinations are usually used for estimating ambiguities
[2]. The second category of algorithms employ the Ambiguity Function Method (AFM) [3]. This technique
uses only the fractional value of the instantaneous carrier-phase measurement and, hence, the ambiguity func-
tion values are not affected by the whole cycle change of the carrier phase or by cycle slips (also see [2, 4]).
The third category comprises the most abundant group of techniques which are based on the theory of integer
least squares [S, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. Parameter estimation in theory is carried out in
three steps: float solution, integer-ambiguity estimation, and fixed solution. Each technique makes use of the
variance-covariance matrix obtained at the float solution step and employs different ambiguity search processes
at the integer ambiguity estimation step. Based on certain search criterion [19], the search algorithm can utilize
the traditional techniques of mathematical programming to guide the global optimization [20, 12, 13] and/or
decorrelation techniques to reduce the search space [9, 16, 14]. Guided random searching techniques can be used
to combat nonlinearity [21, 17]. Note, however, that decorrelation would help speed up searching for the integer
solution only if the dimension is not too large [14].

For any method, a practical concern (especially for kinematic positioning) is that the resolution time of the
integer ambiguity is sensitive to the carrier-phase measurement noise. In a noisy environment, e.g., battle field
with strong jamming signals, radio frequency interference (RFI) signals are spread in the frequency domain by
the de-spreading process. These spectrally spread RFIs increase the effective noise floor in a GPS receiver, mak-
ing carrier-phase measurements more noisy and hence the time to resolve integer ambiguity longer. Whenever a
loss of track due to jamming or blockade occurs, the integer ambiguity has to be resolved again, during which
no high-precision position information can be available. To reduce the phase-measurement noise and the integer-
ambiguity resolution time, various techniques such as those based on signal processing (e.g., time-frequency
domain processing) [22], subspace processing [23] and/or receiver antenna design (e.g., beam forming, null
steering) have been proposed [24, 25] for antijamming. However, even with the application of these techniques,
typically there are still residual errors in the phase measurement and greater efforts are required for fast reso-
lution of the integer ambiguity. Given a minimal requirement for positioning accuracy and acquisition time, it
is desirable to know the corresponding noise level of carrier-phase measurements, in order to employ only the
necessary jamming mitigation techniques.

During the project period, we investigated the performance of a typical integer least-squares ambiguity reso-
lution algorithm in noisy environments. In particular, we addressed how the convergence (acquisition) time of the
algorithm depends on the carrier-phase measurement noise. Naively, one may expect that the time and the noise
variance o have a linear relationship, as suggested by the fact that the variance of n independent noisy mea-
surements of variance o2 is 02/n. However, our theoretical analysis showed that the acquisition time depends
linearly on the standard deviation of noise (or the noise amplitude) o, not on ¢, as also verified by numerical
simulations using a generic integer-parameter estimation algorithm [16]. Since the naive relationship n o o2
would require much more observation samples than the linear relation n o< ¢ (for large ¢ and n), the finding is
important for the design of precise GPS positioning system in noisy environments with tight constraint on time,
such as in kinematic GPS positioning. Our finding is particularly encouraging as it suggests the possibility of
having integer-parameter estimator to achieve significantly short convergence time for precise positioning.

In the following, we briefly review a standard GPS model and describe a generic ambiguity resolution algo-
rithm based on integer least squares. Our focus is on the performance of the algorithm in the presence of noise.
We shall also derive a theoretical relationship between the convergence time and the noise amplitude and provide
numerical verification.



3.1.2 System model

GPS signals are usually corrupted by jamming and several other forms of errors. These error sources can be
partially cancelled by using the technique of double-differencing. For positioning based on the carrier phase, we
assume that jamming and the residual errors can be modeled as noise in the phase. Under this consideration, the
distance between a satellite 7 and a receiver A can be modeled as

pa(k) = A[@% (k) + niy] + v(k), (1)

where k is the discrete sampling time, A is the wavelength of the carrier, ® is the fractional part of the carrier
phase, n is the integer part of the initial carrier phase (i.e., at k = 0), and v is the modeling error. The range p can
be expressed in terms of the satellite position [z*(k), ' (k), 2* (k)] and receiver position [z 4(k),ya(k), z4(k)):

pia(k) = {[z* (k) — za(k)] + [y* (k) — ya(k)] + [2°(k) — za(k)]*}/2. )

The goal is to calculate the receiver position [z4(k),ya(k),z4a(k)] by using known positions of at least three
satellites and the corresponding phase measurements ®.

To linearize Eq. (2), welet x4 = x40 + AT A, Y4 = yao + Aya, 24 = 240 + Az 4, where [z 40, Y40, 240)
is a known reference position near the receiver, which can be estimated using code pseudoranging. Substituting
the linearized version of Eq. (2) into Eq. (1) yields

ABY (k) — plao(k) = @i (k)Az + ai (k) Ay + @i (k)Az - Any, )
e (k) (k) (k)
i (k) —za0 y'(k) — yao i 2t (k) — z40
¥ k S e s k S e e e d lz k —y = ———— . 4
oith) = ~TULE0 gy = LM g iy = - Z) S @)

Suppose the receiver is static and three satellites are continuously tracked from epoch 0 to epoch n, the linearized
observation equations can be expressed in matrix form as

y=Ax+Bz+ v, &)

where
y = [A®4(0) — pho(0), A®%(0) — p%(0),. .|,

x = [Az, Ay, Az]T,2 = It ni, n:}q]T, v is the measurement noise vector, and the matrices A and B are given
by

[ al(0) a%(O) al(0) T =X 0 |0 ]
a%(0) a2(0) a2(0) 0 -X 0
a2(0) a§(0) a3(0) 0 0 =X
A= a%(l) a.z,(l) az(1) ,andB=| -2 0 0 . (6)
a?(1) ai(1) a%(1) 0 -2 0
az(1) a§(1) a3(1) 0 0 -A
- f i L5 Jgmanxa

3.1.3 Integer Least Squares

In the linearized observation equation Eq. (5), x and z are unknown real and integer vectors, respectively, which
are to be estimated from the satellite data by using the maximum likelihood (ML) estimator:

(xmr,2mL) = argmax Py, ,(y(x, 2), (7



where (x,z) € RP x Z9, and Py ,(y|x,z) is the probability of observing y given x and z. Assuming the
stochastic process v is Gaussian with zero mean and covariance X, we have

(xmL,2zmL) = argmin(y — Ax — Bz)TZ7!(y - Ax — Bz). (8)
X,z

If we consider a block matrix [A B] and the unknown vector [x z]7, the floating solution [% z]” can be obtained
by solving
[AB]"='[AB][x2)" = [AB]"Sy, ©)

Eliminating x leads to the least-squares solution of z:
z2=TBY(I = A(ATE1A) ATy, (10)

where I' = (BT C'B)~! is the covariance matrix for z,and C' = -1 - Z-1A(ATE-1A)"1ATE 1,
In general, Z is a real vector and the ML solution can be found in the following least-squares sense [7, 12]:

iML_—_argmin(z—i)TF—l(z—i) for z € Z9. (11)
z

If " is diagonal, the solution for z can be found by rounding each component of Z to its nearest integer. This
simple approach, however, does not work in realistic situations where the matrix I' is typically not diagonal. As a
result, simple rounding off will not give the correct estimate of z and the search for the true integer vector has to
be performed over the entire integer space by using some efficient searching algorithm [5, 6, 11, 8, 16, 18]. Once
z 1, 1s found, the estimate of the real position vector x can be obtained by substituting Z s, into the least-squares
equation (8). This yields

Xpre = (ATETA)TTATS  (y — Bayy). (12)

It should be noted that the ambiguity fixing process (Eq. 11) breaks down Eq. (9), resulting in the above least
squares ambiguity search (LSAS) algorithm not being an optimal one, i.e., it is not guaranteed that (Xps15,20m1) =
(xamL,2zpmr). It has been shown that (§<ML|Z, Zpr 1) can be away from (X7, zprr) and a more general searching
criterion has to be used [19, 4, 26].

7 .
3.1.4 Scaling relation between convergence time and noise amplitude

In practice, we are most interested in cases when the positioning accuracy is high, or the probability of cor-
rect estimate of the integer ambiguity, P, is close to one. Particularly, we wish to know, given certain noisy
environment, how long it will take us to achieve a desired value of P., where P, is close to one. This can
be addressed by investigating the influence of noise on P.. In this study, P. obtained from LSAS is used and
(XMLjzo2ZML) = (XML,ZMmL) is assumed for simplicity, since we are only concerned with large P. and LSAS
algorithm generally produces good results in this situation.

Assume y is a Gaussian variable, then z, a linear function of y, is Gaussian too. We write z = z + u, where
u is Gaussian with zero mean and covariance matrix I. Multiplying both sides by G = I'"/2 and defining
y = Gz, we get y = Gz + 0, where 0 is a Gaussian random variable with zero mean and unit variance.
Equation (11) can then be written in an equivalent form

zpyr = argmin ||y — Gz||? for z € Z9. (13)

The set {Gz|z € Z7} constitutes a lattice in R7. Equation (13) suggests that the maximum likelihood value of z
can be found by computing the nearest lattice point to vector y. The probability P, that zy,, is true is completely
determined by the Venoroi cell. By definition of the lattice, a lower packing distance between two neighboring

points can be computed by using
d x |G|/, (14)
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Figure 1: Synthetic 2-D GPS setup.

where |G| is the determinant of the matrix G and g, the number of unknown integers, is the dimension of G. As a
rough estimate, the distance d can be used to compute the lower bound of the probability P.. Alternatively, given
a desired value of P, there is a corresponding value of d that depends on factors such as the noise amplitude and
the number of data samples. We emphasize, however, that such use of the rough estimate of the lower bound of
P, is only for the purpose of obtaining a scaling dependence of the convergence time on the noise strength, which
by its nature is not precise. In fact, precise estimates of the lower and upper bounds have been obtained recently
[18].
To be able to find a closed-form solution for |G|, here we consider a two-dimensional (2D) GPS setup as
shown in Fig. 1. All results based on this 2D model can be extended to the real three-dimensional GPS setup.
Assume that there are g satellites tracked and the noise terms for the corresponding carrier-phase measurements
are independent of each other with covariance matrix ¥ = o?I. The inverse of I becomes

A2 Q
r-? BTB -BTA(ATA) 'ATB| = = ol - ——— 15
02[ ( 3 | = n e e | (15)

where

n q n q n q
di =Y D laz (k)P da=y_ > ai(k)ay(k), and dg =D Y [a}(k)]?, (1)

k=0 i=1 k=0 i=1 k=0 i=1

and Q is a ¢ X ¢ matrix with elements given by

i =ds Za] Z L(k) —2dy Y _al(k) Y al(k)+dr Y _al(k) D) al(k). (17
k=0 k=0

k=0 k=0 k=0

Apparently, |G|'/9 = |T'~1|1/2¢ depends on both o and n.
To find the relationship between o and n for a given P, or equivalently, a constant [['~!|, we assume

[z 40,Y.40] = [0, 0], the initial angle of satellite 7 is a, the orbital speed of the satellite is ¢, and the sampling

period is 7. We then have

n
Za;( Zcos a+ akT) = Zcosa-}-smaZakT—EnzTasma—(n+l)cosa (18)



where higher order terms of akT in the Taylor expansion are neglected. The approximation error is generally
small since &kT is relatively small. Similarly, we have

Q

E ay (k) §n2Tdcosa— (n+1)sina (19)
k=0

n
- 1
2:[0,;(lc)]2 = én(n +1)(2n + 1)T?a%sin? a — 2n?Tasinacosa + (n + 1) cos? a (20)
k=0

n
; 1
Z:[a;(k)]2 = gn(n +1)(2n + 1)T?¢% cos® a — 2n*Tasinacosa + (n + 1) sin® a (21)
k=0
e & . 1 : 1
Z az(k)ay (k) =~ gn(n +1)(2n + 1)T?a2sina cos o — §n2Td + (n+ 1)sin acos a. (22)
k=0

L
Substituting Eqs. (18) and (19) into Eq. (15), one can see that each entry in I'"! can be expressed as a second-
order polynomial of n divided by 0. Thus, for increased o, n has to be increased proportionally in order to
maintain a desired positioning accuracy (or a constant |I'~!|). This implies

n«o, (23)

for n > 1. While larger noise requires more data samples from the satellites, the linear relation indicates that,
to achieve a desired positioning accuracy, the requirement is not as stringent as one would naively expect from
n o o2. Our derivation suggests that if the satellites were kept static with respect to the static GPS receiver [i.e.,
& = 0 in Eq. (18)], then the scaling relation n o2 would hold. It is the relative movement between GPS
satellites and Earth surface that introduces another degree of dependence on n, resulting in a shorter estimation
time than the static case. Note that the movement of the receiver will have similar effect if the velocity of the
receiver is known exactly. This is in fact quite encouraging as it suggests that the integer parameter estimation
time for kinematic GPS is likely to be shorter.

3.1.5 Simulation Results

Since the purpose of the simulations is to verify the theoretically derived dependence of the covergence time on
the noise amplitude, it is necessary to be able to vary the noise variance in a systematic way. A synthetic 2D
GPS setup, as illustrated in Fig. 1, is suitable for this purpose. The setup is similar to the one used in [16]. We
assume that the position of the (GPS) receiver x, which is to be determined, can be modeled as a zero-mean
Gaussian random variable with certain variance in each dimension. The coordinate axes are chosen such that
the origin is a point on the surface of the earth [a point on the periphery of a circle of radius equal to that of the
earth R, = 6357km]. We further suppose that there are three visible satellites orbiting the earth at the altitude
of 20, 200km and with the period of 12 hours (angular velocity of 1/120s~!). The satellites transmit a carrier
signal of wavelength A = 19cm each, and their coordinates are known to the receiver. The receiver, which is
assumed to be completely synchronized with the satellites (meaning that it can generate the transmitted carrier
signals), measures the phases of the received carrier signals every 7 = 2s and unwraps them as times goes
by. By multiplying these (unwrapped) phase measurements by the wavelength divided by 27 , the receiver can
measure its distance (or range) to each satellite up to some additive noise, which is assumed to be N (0. ¢?) and,
of course, up to an integer multiple of the wavelength. (This integer multiple can be thought as the number of
carrier signal cycles between the receiver and the satellite when the carrier signal is initially phase locked.) As
we have described, by linearizing the range equations, the problem becomes one of estimating a real parameter
x (the coordinates of the receiver) and an integer parameter z (the integer multiples of the wavelengths) in a
linear model. In the simulation that follows, the actual location of the receiver is x = [50; 100]7, which will be
estimated using the carrier-phase measurements. We assume that the standard deviation of x is 100m along each
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Figure 2: P, versus time for & = lcm. Note that P, after t = 200s is almost equal to one in the simulation.

coordinate axis. The satellites make angles of 100, 130, and 50 degrees with the axis initially, and the direction
of rotation for all of them is clockwise. The standard deviation of phase-measurement noise in units of length is
assumed to be in the centimeter range. Using the carrier-phase measurements, the receiver tries to find its own
position x (as well as the ambiguous integer multiples of the wavelengths) as a function of time by solving for
the ML estimates.

Figures 2 and 3 show the results of the algorithm for ¢ = lcm in terms of P. and receiver positioning
respectively. The exact value of the P, is computed by Monte Carlo simulation of 1500 runs. It can be seen that
the position estimation error reduces as the probability of correct integer estimation approaches unity. When the
integer ambiguity is resolved correctly, the position estimation error is of the order of millimeters.

Having established the accuracy of the integer least-squares algorithm for static GPS positioning, we wish
to evaluate its performance in the presence of noise. For this purpose, the algorithm was provided with various
values of phase measurement noise variance as input. The range of ¢ varied from 0.2cm to 2cm with increment
of 0.2cm. The values of P, for all cases were calculated using 1500 Monte Carlo simulations. Figure 4 shows P,
versus time for various ¢ values. It is observed that as o increases, the time it takes to achieve a certain level of
P, also increases. The family of curves in Fig. 4 can be used to calculate the maximum allowable noise variance
for a given amount of observation time and required value of P,.. For example in Fig. 4, if the observation time is
150 s and the integer ambiguity estimate is to be reliable with 90% accuracy (P, = 0.9), the maximum allowable
noise variance is about 1.2cm.

Figure 5 shows the linear relation characterizing the sensitivity of performance to noise amplitude, as pre-
dicted by our theoretical analysis. A use of this result is that the performance of integer least-squares algorithm
can be predicted for a given noise level.

3.1.6 Discussions

We have addressed the performance of integer least-squares algorithm for GPS signals in noisy environments.
Mathematically, integer ambiguity resolution is equivalent to searching for the integer vector closest to a given
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Figure 3: Position estimation error (meters) versus time (sec), where the initial errors (t < 20s) are large and not
shown in the figure.
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Figure 4: P, versus time for o values ranging from 0.2cm to 2cm (from left to right). Maximum allowable noise
variance for given values of time and P, can be determined accordingly.
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Figure 5: Sensitivity of performance to measurement noise variance. From top to bottom: P, =
0.99,0.95,0.9,0.75, 0.5 respectively.

real vector on an integer lattice. In a noisy environment, the probability of error can be significantly large. We
find that the observation time required to achieve a fixed value of a lower bound of P, and thus P, itself is
directly proportional to the standard deviation of phase-measurement noise, in contrast to the naive expectation
that the time is proportional to the variance of the phase noise. This suggests the possibility of achieving short
convergence time even if large noise is present.

It should be noted that we have assumed an ideal system model in this study. For example, systematic errors
are assumed to be eliminated by using double differencing, and the resulted system errors are approximately
Gaussian with zero mean. This may not be true in practice, especially when long baselines are utilized. In this
situation, additional modeling of large residual errors has to be employed, e.g., the means of residual ionospheric
and tropospheric errors have to be estimated together with x and z. If the means of these residual errors remain
constant or change slowly during the process of ambiguity resolution, the convergence time of ambiguity reso-
lution will only be delayed approximately by a constant, the overall linear relationship between the time and the
noise amplitude should still hold.

We also remark that the main objective of our work is to obtain a scaling relation between the convergence
time and the noise strength, which is an order-or-magnitude type of estimate. The reason is that the convergence
time depends on too many algorithmic and system details and it is not possible to give precise numbers to
characterize it. For this purpose we have based our theoretical analysis on the upper and lower bounds in the
probability of correct resolution of the integer ambiguity given in [16], as the required computational time is
only polynomial. However, these bounds can be poor and much tighter bounds can be found in Ref. [18]. We
wish to emphasize that the results obtained for the performance in the presence of noise are based on the integer
least-squares principle in general and thus they should not be dependent on the specific search method used.

For future directions, parallel algorithms taking advantage of multiple satellite signals to reduce the ambiguity-
resolution time should be pursued. In addition, the study for the effect of noise on GPS positioning should be
extended to kinematic GPS positioning algorithms. It is also recommended to develop a particle-filter based
algorithm and to compare its sensitivity to noise with those of integer least-squares algorithms for both static and
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Figure 6: Block diagram of our proposed GPS antijamming scheme.

kinematic positioning.

3.2 Empirical Mode Decomposition and Application to Anti-jamming for GPS Signals
3.2.1 Background

GPS signals are direct-sequence (DS) spread-spectrum signals and therefore have some degree of inherent noise
immunity [27]. After despreading the received signal, the original satellite signal can be collapsed into a narrow
bandwidth about the carrier frequency, while the jamming signals are spread due to the lack of correlation with
the pseudo-random code that encodes the satellite information. A portion of the spread jamming signal remains
within the frequency band entering the tracking loop with the satellite signal. Thus signal tracking can be stable
only if the jamming-to-signal ratio (JSR) is below the processing gain of the spreading code. In general, a JSR
of greater than 40dB is likely to prevent the GPS receiver from tracking the satellite signal and from estimating
its own position.

There are situations where jammers may be much stronger than the GPS signals, and are located at close
physical proximity to the GPS receiver. In such a case, the spreading gain of the spread-spectrum system might
not be sufficient to decode the satellite data reliably. In fact, one of the major difficulties in time-space position
information (TSPI) design in defense applications is jamming rejection. During the project period, we developed
a procedure based on the empirical-mode decomposition (EMD) method [28], in combination with the traditional
blind source separation (BSS) technique, as a receiver-based algorithm to suppress jamming. For practical im-
plementations, our algorithm may be integrated into the software radio such as the one described in Ref. [29].
Schemes similar to ours have been suggested for applications in different contexts, such as biomedical signal
processing, notably in Refs. [30] and [31] where a combination of EMD and independent component analysis
was employed.

The traditional Fourier analysis is powerful for stationary (or piecewise stationary) signals. While the wavelet
method can handle nonstationary signals, it is essentially an adjustable window Fourier spectral analysis and
therefore fundamentally it is also a linear method. The method of EMD was pioneered by Huang et al. to
specifically deal with nonstationary and/or nonlinear signals [28]. That jamming signals in GPS applications
are likely to be nonstationary and possibly nonlinear motivates us to investigate the applicability of EMD-based
methods for antijamming. The block diagram of our proposed method is shown in Fig. 6, where the original
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GPS data that carry the satellite information are encoded and both noise and jamming are present in the received
GPS signal. The EMD/BSS combined procedure decomposes the jammed GPS signal into a number of modes
of distinct time scales. Since the code that encodes the satellite information (the C/A code) is also known at the
receiver end, a decorrelation procedure can be used to identify the modes that contain mostly the original GPS
data. We shall detail our method and provide strong evidence that the method works for nonstationary jamming
of JSR of up to 45 dB.

In the following we provide a brief background of the GPS signal structure and discuss several existing
antijamming methods. We then describe the EMD and BSS methods and their implementations and present
simulation results with GPS signals.

3.2.2 GPSsignal structure and existing antijamming methods

GPS consists of 24 satellites orbiting at the altitude of 20,183 km, of known positions. The signals transmitted
by the GPS satellites are direct-sequence spread-spectrum (DSSS) signals that consist of three portions: the
Course Acquisition (C/A) code on the L1 carrier (1.575GHz), the P-code on the L1 carrier, and the P-code on
the L2 carrier (1.227GHz). The C/A code has a chip-rate of 1.023MHz and a period of Imsec, while the P-code,
for military use only, has a chip-rate of 10.23MHz and a period of 1 week. As shown in Fig 7, with Binary
Phase Shift Keying (BPSK) modulation, the resulting C/A-code signal requires a bandwidth of 2x1.023MHz for
transmission, and the P-code signal needs a bandwidth of 2x10.23MHz.

A GPS receiver receives DSSS signals from four or more satellites and estimates the code-phase differences
and/or carrier-phase differences in order to calculate its own position [2]. As shown in Fig. 8, the GPS receiver
contains two tracking loops: code-phase tracking loop and carrier-phase tracking loop. Code tracking and de-
spreading are performed prior to carrier tracking since the power of the received GPS signal is much lower than
the background noise and sufficient signal-to-noise ratio (SNR) necessary for carrier-phase tracking can only be
achieved by code despreading. The pseudo-random noise (PN) generator generates a PN sequence identical to
the C/A or the P code to synchronize with the input signal from a GPS satellite. The code correlator sweeps the
uncertainty ranges of the input-code phase at discrete steps, and detects the coarse synchronization (acquisition)
of the code phases between the input and local signals by finding the maximum of the correlation function. The
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Figure 8: Block diagram of a GPS receiver that typically consists of a code and a carrier-phase tracking loop.

code-phase tracking loop can track the variations of the incoming code phase and keeps the code-phase alignment
error within an allowable limit after the code-phase acquisition. From accurate tracking of the code phase, the
pseudo-range time delay can be obtained and the input signal is despread to yield encoded navigation and timing
information. The despread signal is then passed on to the carrier-phase tracking loop for ranging.

In a hostile environment where jamming sites may be close to GPS users, a huge JSR is possible. Thus, in or-
der for GPS receiver to function, jammer should be either rejected before the tracking loops or reduced/eliminated
inside the tracking loops. For the first case, the structure of conventional tracking loops does not require change,
while for the second case, novel algorithms need to be designed.

There are a number of ways to mitigate the effects of jamming on GPS receivers before the signal enters the
tracking loops. These are (1) time-domain filtering [32, 33], (2) frequency-domain filtering [34, 35], (3) spatial
filtering [24, 36], and (4) time-frequency filtering [22, 37]. The first two types of filtering are conventional. The
third type typically uses adaptive nulling antenna, an array of antenna elements. Spatial filters have the ability
to modify its reception pattern, i.e., different amplification rates for signals from different directions of arrival
(DOA). Based on the assumption that jamming signals and satellite signals have different DOA, adaptive nulling
antenna can emphasize the desired GPS satellite signals and reject the jamming signals [24]. The technique is
effective for both narrow- and broad-band jamming signals. However, due to multi-path propagation of signals
and constraints on its size and power, adaptive antenna alone cannot provide an acceptable interference mitiga-
tion. The fourth type (time-frequency filtering) relies on the assumption that broad-band satellite and jamming
signals have distinct time-frequency signatures. Once the instantaneous frequencies of the jamming signals are
estimated from the received signals, techniques such as time-varying notch filter [22] or subspace projection [37]
can be used to reduce or eliminate the jamming. A possible drawback is that time-frequency filters tend to block
the frequencies occupied by jamming signals, and thus also subtract the power of satellite signals at those fre-
quencies from the total power of the received signals. If jamming signals occupy a substantial bandwidth in the
signal spectrum, the filtered signals will be significantly distorted. Thus, in general, this method is more effective
for narrow-band jamming signals.

The conventional code-tracking loop utilizes delay-lock loop (DLL), which offers little protection against
jamming and multipath. One way to increase the robustness of DLL is to include models (e.g., AR model) for
jammer signals and multipath in the DLL. The resulting DLL can then estimate the code delay using adaptive
algorithms, e.g., Kalman filters and/or particle filters [38, 39].

Our proposed EMD/BSS procedure is fundamentally a nonlinear signal-processing method and it is therefore
different from these existing linear methods.
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3.2.3 Nonlinear antijamming: proposed EMD/BSS methodology

Our method applies EMD to the received jammed GPS signal to decompose it into a number of intrinsic mode
functions (IMFs), which can be regarded as multiple observations of a random process. Assuming that these
observations are linear combinations of the original signal, a BSS technique can be used to extract the GPS
signal from the IMFs.

EMD method. Traditional methods such as the Fourier spectral analysis assume stationarity and/or approxi-
mate the physical phenomena with linear models. These approximations may lead to spurious components in the
time-frequency distribution diagrams if the underlying signal is nonstationary and nonlinear. Empirical Mode De-
composition (EMD) is a technique [28] to deal specifically with nonstationary and nonlinear signals. Given such
a signal, the method adaptively decomposes it into a number of modes (IMFs) that are topologically equivalent to
amplitude- and frequency-modulated, sinusoidal signals. In the analytic-signal representation, the modes corre-
spond to proper rotations [28]. Thus the EMD method naturally yields estimates of the significant instantaneous
frequencies embedded in the signal, by performing the Hilbert transform on each IMF. The ease and accuracy
with which the EMD method processes nonstationary and nonlinear signals have led to its widespread use in
various applications such as seismic data analysis [28], chaotic time series analysis [40, 41], and meteorological
data analysis [42], etc.

Given a signal X (t), the EMD method focuses on the level of local oscillations and decomposes the signal
into a finite and often a small number of fundamental oscillatory modes. The bases (IMFs) into which the signal
is decomposed are obtained from the signal itself, and they are defined in the time domain. They are of the
same length as the original signal and preserve the frequency variations with time. The base modes can be
made approximately complete and nearly orthogonal with respect to each other. Here, completeness implies
that the original signal can be reconstructed without any loss of information by simply summing up the IMFs.
Thus, the IMFs can be viewed as linear components of the original or source signal X (¢). In order to achieve
this, two conditions need to be satisfied: (1) the total number of extrema of IMF(t) be equal to the number
of zero crossings, and (2) the mean of the upper envelope IMF,(t) and the lower envelope IMF,(t) be zero.
The process to obtain the IMFs from the signal is called sifting, which consists of the following steps: (1)
identification of the extrema of X (t), (2) interpolation of the set of maximal and minimal points (say, by using
cubic splines) to yield an upper envelope X, (t) and a lower envelope X;(t), respectively, and their average
m(t) = [Xu(t) + Xi(t)]/2, (3) subtraction of the average from the original to yield d(t) = X(t) — m(t), and
(4) repetition of steps (1-3) until d(t) satisfies the two conditions for being an IMF. Once an IMF is generated,
the residual signal r(t) = X (t) — IMF;(t) is regarded as the original signal, and steps (1-4) are repeated to yield
the second IMF, and so on. The procedure is complete when either the residual function becomes monotonic,
or when the amplitude of the residue falls below a pre-determined small value so that further sifting would not
yield any useful components. These features guarantee the computation of a finite number of IMFs within a finite
number of iterations. The outcome of the EMD procedure is the following decomposition of the original signal:

X(t) =) _IMF(t) +r(t) . (24)

where IMF;(t) is the ith IMF, n is the total number of IMFs, and r(t) is the final residue that has near zero
amplitude and frequency.

Figure 9 shows the IMFs obtained from a simulated GPS signal to which a zero-mean and unit-variance
Gaussian noise and a stationary, sinusoidal jamming signal are added. The GPS signal has the amplitude of 2 and
the jamming amplitude is 200 (corresponding to JSR of 40dB). The top left panel shows the noisy and jammed
GPS signal, and the seven remaining panels show the seven significant IMFs. We note that the first IMF in the top
right panel visually resembles the original GPS signal. This example thus illustrates that for stationary jamming,
the EMD method is capable of directly separating the GPS signal from the jamming. However, this appears not
to be the case for nonstationary jamming, as shown in Fig. 10, where the top left panel is the noisy and jammed
GPS signal. The jamming is a frequency-modulated signal with normalized frequency increased linearly from 0
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Figure 9: IMFs of a noisy and jammed GPS signal, where the jamming is stationary and the noise is Gaussian.
The first IMF (upper right panel) is approximately the original GPS signal.

to 0.5 in the time interval considered. We find that none of the seven IMFs shown (in the remaining 7 panels)
looks like the original GPS signal, which is in fact embedded in all IMFs. It is thus necessary to invoke a proper
BSS procedure to extract the GPS signal.

Blind Source Separation. Blind Source Separation (see [43] for a review) is a method to extract basic source
signals from several observed mixtures. It is considered “blind” because the source signals are not observed
and no information is available about the observed mixtures. An a priori assumption is that the sources are
independent of each other and they are not all white noise. BSS is particularly suitable for situations where
different observations of the same sources are received from different sensors. The BSS technique has found
applications in areas such as communications and biomedical signal processing [44, 45, 46].

Consider the time varying vector of observations

X(t) = [X1(2), - Xe ()" (25)
obtained as a mixture from k sources
S(t) = [Si(t), .., Sk(t)]T andX(t) = AS(t) (26)
where A is the mixing matrix. We reconstruct the sources
Y(t) = BX(t) (27)

where B is a matrix to be determined, by adopting the criterion of minimizing mutual information. This requires
the estimation of joint entropy, which is computationally expensive, and therefore we adopt the idea of Gaussian
Mutual information [47] that requires computation only up to second-order characteristics.

16



GPS Signal + Jam IMFs

2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
4
(V]
3
= 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
E 40 10
<
0 0
-10 -10
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
2
2
0 0
-2
2
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
Samples

Figure 10: IMFs of a noisy and jammed GPS signal, where the jamming is nonstationary and the noise is Gaus-
sian. In this case, the original GPS signal is spread over all IMFs.

3.2.4 Simulation Results

For simulation purposes, we have used the following baseband model for received GPS signals:
r(t) = c(t)d(t) + j(t) + n(t), (28)

where r(t) is the received signal, ¢(t) is the spreading sequence, d(t) is the transmitted GPS information symbol,
n(t) is the noise, and j(t) is the jamming. In the simulation, the length of spread sequence is varied from 10 to
20 bits. For stationary jamming simulations, pure sinusoids of frequency 0.2 to 0.5 times the sampling frequency
are chosen. Nonstationary jamming is modeled as a chirp signal with frequency changing from 0 to 0.5 times
the sampling frequency. The amplitude of the transmitted GPS signal is normalized to unity, while the jamming
amplitude is varied so that the maximal JSR is 45dB.

The code for EMD is adapted from the one developed by Rilling et al. [Matlab codes (G. Rilling, P. Flandrin
and P. Goncalves), http://perso.ens-lyon.fr/patrick.flandrin/femd.html]. During a run, typically between 8 and 10
IMFs are generated. As can be seen from the time-series plots in Fig. 9, from the IMFs of stationary jammed GPS
signal we can visually distinguish the jammer from the GPS signal. The GPS signal is captured almost entirely
in the first mode, whereas the jammer is captured in the 2nd and 3rd modes. In this case, the BSS procedure is
not necessary. To recover the GPS signal, it is a relatively simple matter of correlating the mode that contains
the GPS signal with the PRN code. For nonstationary jammer, as in Fig. 10, both the GPS and the jamming
are mixed in all the IMFs. In this case, it is necessary to use the BSS to extract the GPS signal. In particular,
the IMFs can be regarded as multiple observations of the received signal. We adapted the code from the BLISS
project [BSS Demonstration Code (http://www-Imc.imag.fr/SMS/SASI/bliss.html)] for BSS.

Figure 11 shows the result of extracting the GPS signal in the presence of stationary jamming, where the two
top panels show the original GPS and the original jamming signals, respectively, and the two lower panels show
the extracted GPS and jamming signals. A typical result with nonstationary jamming is shown in Fig. 12. It is
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Figure 11: Result with stationary jammer. Upper panels: original GPS signal and jammer. Lower panels:
extracted GPS signal and jammer.

apparent that our combined EMD/BSS methodology is capable of estimating the GPS signal in the presence of
strong jamming, stationary or nonstationary.

To quantify the “goodness™ of our method, we examine the bit error rate. In particular, information bits
associated with the extracted GPS signal are compared with those in the original GPS signal. A typical result for
one C/A code is shown in Fig. 13, where the ratio of bits received correctly to the number of bits transmitted
versus the jamming signal amplitude is plotted. The upper and lower traces show the ratio for stationary and
nonstationary jamming, respectively. We see that for stationary jamming, the information bit can be extracted
with certainty. For nonstationary jamming of JSR of as high as 45dB, the percentage of correctly extracted bit is
above 80%. Since one GPS bit (0 or 1) is modulated using 20 C/A codes, setting a conservative threshold, say
at unity, for the ratio between the number of correctly estimated bits and that of the wrong bit can guarantee the
extraction of the correct bit. For example, suppose the original bit is 1 and the JSR is 40dB, then out of the 20
C/A codes, 1 will appear approximately 16 times and O (the wrong bit) will appear about 4 times. The ratio is
then 4, which can be distinguished from 1 almost certainly. Figure 13 suggests that our EMD/BSS method can
perform to extract GPS satellite information in the presence of nonstationary jamming of JSR up to about 45dB.

3.2.5 Discussions

Intentional jamming of GPS signals is a serious concern especially for military applications. The nature of
the GPS signal, i.e., its extreme low signal intensity, makes it vulnerable to jamming. In applications where
dependence on GPS is high, a jammed GPS signal could have disastrous consequences. Thus it is of tremendous
interest and importance to explore practical antijamming schemes.

We proposed and tested a simple yet effective antijamming algorithm which can be implemented in the
receiver stage after the acquisition of the GPS signal. The algorithm makes use of two available techniques for
data analysis: the Empirical Mode Decomposition method and the Blind Source Separation method based on
Gaussian Mutual Information. We showed that the algorithm is capable of accurate estimation of GPS signal bits
in the presence of stationary or nonstationary jammers. In particular, simulation results indicate that the GPS
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Figure 12: Result with nonstationary jammer. Upper panels:
extracted GPS signal and jammer.
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data can be decoded accurately with no error for nonstationary jammer of JSR of up to about 45dB.

For nonstationary jammer of JSR above 50dB, the performance of our method deteriorates. The solution
may be to combine this algorithm with spatial filtering methods such as those described in [24, 36]. Another
possibility is to integrate Kalman or particle filtering in the algorithm for estimating the phase/code delay. The
model for such a system would assume the presence of jamming interference and, when combined with our
algorithm, might enable GPS signal processing in the presence of exceedingly strong jammer.

3.3 Precise GPS positioning of moving objects in noisy environment by particle filters
3.3.1 Background

The problem of estimating the time-varying state of a system based on experimental measurements. or obser-
vations finds many applications in physics, biology, and engineering. Examples include quantum state recon-
struction and purity estimation [48, 49], noise reduction and state reconstruction in chaotic dynamical systems
[50, 51], estimation of bounds on isocurvature perturbations in the Universe and on cosmic strings from cos-
mic microwave background and large-scale structure data [52, 53], gravitational wave signal analysis [54, 55],
macromolecular structure determination [56, 57], prediction of protein-protein interactions from genomic data
[58], tracking and positioning problems [59], etc. In general, a system model that evolves the state vector ()
in time is needed, so is an observational model that relates an observation vector (y) to the state vector. In any
realistic application both noise and model uncertainties exist, rendering necessary a probabilistic treatment of the
estimation problem. That is, one can evolve z according to the system model, and make corrections to or update
based on the available y. The quantity of interest is the posterior probability density function (pdf) p(z|y), given
all available observations y. The standard approach to addressing this problem is Bayesian inference [60], which
leads to the classical Kalman filter when both the system and the observational models are linear. For nonlinear
problems, a viable approach is sequential Monte-Carlo simulation (or particle filter) [61, 62, 63], which uses a
set of random samples to approximate the posterior pdf p(z|y). The approximated pdf evolves and is corrected
by the observation based on the Bayes rule. If the number of samples is sufficiently large, the approximation
approaches the optimal Bayesian estimate. Due to the constant improvement of modern computing technol-
ogy, the sequential Monte-Carlo approach has begun to find significant applications in science and engineering
[62, 63, 64].

A fundamental question in sequential Monte-Carlo simulations is how the precision of the estimated state
vector depends on noise in the system and in the observation. Another issue of significant practical interest is
how to deal with occasional but large disturbances, or outliers, in the observation. During the project period, we
addressed these two related problems. In particular, we derived and verified a self-consistent equation that relates
the covariance matrix of the samples, which determines the precision of the state estimate, to the covariance
matrices of the system noise and of the observational noise. In addition, we proposed a robust sequential Monte-
Carlo scheme to overcome the effect of outliers. In this regard, previous approach includes using heavy-tailed
error distribution to improve the state-space models so that they react quite flexibly to changes in points or edges,
but still provide smooth fits in other regions [65]. Leave-k-out diagnostic is used to detect a series of consecutive
outliers for a linear state space model [66]. It uses all residual observations in the time span to check whether
a series of consecutive observations are jointly outlying, thus it is actually “off-line”. Our idea is to detect the
outliers from the previous knowledge about the system and then to eliminate them in the sequential Monte-Carlo
implementation. Simulations using a precise GPS positioning problem demonstrate the power of our scheme.
We expect our results to have significant impacts on problems where the underlying system and/or experimental
observations are subject to outliers. For example, the observation of a star or a galaxy may be corrupted by the
drastic activity of another celestial body in a short period. In biological physics, macromolecular structure is
inferred indirectly from various measurements, e.g. nuclear magnetic resonance spectra, X-ray reflections, or
homology-derived restraints, which can easily contain outliers [56]. In GPS (global positioning system)-based
precise positioning problems, GPS signals may be disturbed by sudden and large jamming.
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In the following, we outline the basic steps of sequential Monte-Carlo method and derive a self-consistent
equation governing the dependence of estimation error on noise. We then present a robust sequential Monte-Carlo
scheme for mitigating the effect of measurement or observational outliers and provide numerical support.

3.3.2 Sequential Monte-Carlo method

Lety(0:t) = {y(t'),t' = to(=0), t1, tg, --- ,tx(= t)} be the observations from time 0 to time ¢, which are not
necessarily equidistant in time. We seek to obfain the posterior pdf p[z(t)|y(0 : t)]. The state and observational
equations are

z(t) = flz(te-1),v(tk-1)], (29)
y(t) = glz(t), e(t)], (30)

which describes the evolution of the state and maps the state to the observational vector, respectively, f and g
can be nonlinear functions. The processes v(t) and e(t) represent random fluctuations (e.g., noise, uncertainties,
outliers, etc.) in the system and in the observation, respectively. Often, in an application the distribution of the
initial state can be obtained by considering the specific physics involved. It is thus reasonable to assume that
this distribution is available. The pdf p[z(t)|y(0 : t)] can then be obtained recursively by prediction through the
dynamical equation (29) and likelihood correction through the observational equation (30). In particular, given
the pdf p(z(tx—1)|y(0 : tx—1)] at time tx_1, the prediction step uses the dynamic equation (29) to obtain the prior
pdf of the state at time ¢ via the Chapman-Kolmogorov equation

plz(t)|y(0 : tx— 1)]—/dr(tk_l)-p[x(t)lx(tk_x)]-p[x(tk_l)!y(O:tk_l)], (31)

where p(z(t)|z(tk-1),y(0 : tx—1)] = plz(t)|z(tk-1)] is used. At time t, a new measurement y(t) becomes
available, which can be used to correct the prior pdf via the Bayes rule

ply(t)|z(t)]p[z(t)|y(0 : tx_1)]
ply(t)|y(0 : tx_y)]

plz(t)|y(0: t)] = . (32)

where

Pl (0 : tx_r)] = / Ply(®)|z()] - ple(®) y(0 : tx_))dz

depends on the likelihood function p[y(t)|z(t)]. The recurrence relations (31) and (32) form the basis for optimal
Bayesian solution. For Gaussian noise, when f and g are linear functions, the recurrence relation can be solved
analytically, which is the classical Kalman filter. For nonlinear functions f and g, a linearization technique is
viable which leads to the so called extended Kalman filter [67]. Unscented Kalman filter deliberately selects a
set of points and propagate them through the nonlinearity to estimate the Gaussian approximation [68]. While
for more general cases, the approach of sequential Monte-Carlo simulation is desirable [61, 62, 63, 64]

Let {z;(t), wi(t)}Y, denote a random measure that characterizes the postenor pdf plz(t)|y(0 : t)], where
{ae(t), =1, ... N}is a set of support points with associated weights {w;(t), i =1, ..., N}. The weights are
normalized that ), w;(t) = 1. The posterior pdf can be approximated as

N
ple(®)ly(0 : )] = Y wi(t)d(x(t) — zi(t)),
=1

where §(z) is the Dirac delta function such that 5(z) = 0 if z # 0 and f;f d(z)dz = 1 if (x1, z9) contains 0.
The average of an arbitrary function f(x) can be simplified as

(fle(t) / f(@)plaly(0: t]dx—zw, () f ().
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The weights are chosen using the principle of importance sampling [69]. In particular, given an arbitrary pdf
p(z), it may be difficult to draw samples. Suppose for an alternative pdf ¢(z), samples can be drawn relatively
easily. Letting z; ~ g(z) (i = 1, ..., N) be samples drawn from some ¢q(-), the importance density, we obtain the
following weighted approximation:

N
~ Z wid(z — x;),
i=1

where w; x p(z;)/q(z;) is the normalized weight of the :’th sample.
Now consider the joint probability p[z(0 : t)|y(0 : t)]. In case of independent noise samples, we can write

k

plz(0 : £)[y(0 : )] o p[z(0)|y(0)] [ ] plu(t)l=(t)lplx(t;)|x(t;-1)].
ji=1

Thus

pl(0 01y 0 : ] = pla(t), (0 : t1)ly(t),¥(0 s e-1)
= sl el k0 a0 a)

Assume the posterior distribution p[z(0 : tx—1)|y(0 : tk_1)] is approximated by {z;(0 : tx—_1), wi(te—1)}Y,,
given a new observation y(t), the objective is to obtain an approximation {z;(0 : t), w;(t)}Y., for p[z(0
t)|y(0 : t)], such that the estimation of quantities of interest at time ¢ can be calculated. The sequential Monte
Carlo scheme is to generate a sample z;(t) and append it to z;(0 : tx_1) to form z;(0 : t), and update the weight
w;(tk-1) to w;(t).

If the importance function g[z(0 : ¢)|y(0 : t)] can be factorized as

q[z(0 : t)|y(0 : t)] = q[z(t)|x(0 : tx—1),y(0 : t)] x q[x(0 : tx_1)|y(0 : tx_1)], (33)

and z;(t) is sampled from g[z(t)|z;(0 : tx—1),y(0 : )], the weight of the trajectory z;(0 : t) is

) o PO 00 0] Ply(®)lz Ol (Ol (b))  BIz0: te-n)lV(0: b))
i glzi(0: )ly(0: )] qlai(®)lwi(0: tk—1),9(0: Oply(®)y(0: th-1)] ~ glei(0: tx_1)[y(0: t1)]
o Ply®)lzi( t)]p[xl()lx'(tk_l)]wi(tk—l)

qlai(t)]zi(0 : te—1),y(0 : )]

where p[y(t)|y(0 : tx_1)] is omitted since it is common to all samples. A convenient choice for the importance
density is the following prior importance density (63, 64]: q|z(t)|zi(0 : tk—1),y(0 : t)] = plz(t)|zi(tk-1)], with
which the weight updating equation becomes

w;(t) o< wi(tx—1)ply(t)|zi(t)], (34)

and the posterior filtered density p[x(t)|y(0 : ¢)] can be approximated as

N
plr()ly(0: )] = > wi(t)d[z(t) — z:(t)). (35)
=1

From a numerical point of view, the above analysis can be implemented as follows. First generate N samples
{z;(0)]s = 1,--- , N} from the distribution of y(0) as given in Eq. (30). Each sample has a weight of 1/N.
Each sample x,(O) then evolves according to the dynamical equation (29) by considering the noise v to get the
value at time ¢1, e.g. z;(t1), and the weights are updated via Eq. (34). The estimation of the state at time
ty is (z(t1)) = Zf\;l wi(t1)x;i(t1). During the evolution, it may occur that there are disproportionally fewer
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samples about z; than determined by weight w;. To avoid this, a sample importance resampling procedure [63]
can be applied. That is, we can generate a new set of samples {z, w}}}¥, from the samples {z;, w;}Y, with
probability being their weights, i.e. each time, the probability to draw sample x; is its weight w; (note that the
weights are normalized that ), w; = 1). The weights w] for the new samples are then set as 1/N. As a result of
this resampling procedure, the weight w; of a sample is represented by the number of duplications of the sample,
thus the statistics of the samples, e.g. mean value, covariance, etc., are unchanged in the large /V limit. The
resampling step automatically concentrates the samples in regions of interest and effectively discards samples
with low weight. However, this may result in overlaps for some samples. For example, if one sample has a
very large weight, after resampling, it may have many duplications, which leads to a degeneration problem. To
overcome this difficulty, a regularization process can be applied: A small random vector is added to each sample
as a perturbation: z; «— x; + hDe;, where ¢; follows the standard normal distribution, D is such that DDT =§
(DT is the transpose of D). The matrix S is the empirical covariance matrix of the samples before resampling,
and the quantity h is a regularization parameter [63, 70]. The samples again propagate via the dynamical equation
(29) to yield the values at next time step. The process continues until a desired time span for estimation is reached.

3.3.3 Noise dependence of estimation error

When noise of the system is stationary, i.e. the covariance matrices %, and ¥, for the process noises v and e
in Eqs. (29) and (30) are constant in time, the samples can evolve into a “steady” state and their covariance
matrix can be obtained, which is proportional to the estimation error. Suppose at time ¢x_; the covariance matrix
of the samples is ¥, (tx_1), -which is unknown. Since the dynamical equation f is known, after propagating
through Eq. (29), the covariance matrix X s of the samples at time tx can be expressed in terms of ¥z (tx—1) and
¥y, which reads ¥7(X;(tk—1), Xy). To make use of the correction step [Eq. (32)], we solve = from Eq. (30):
x = g '(y,e). Therefore, for a given observation y(t), the covariance matrix for x(t), from the observational
point of view, can be obtained as X[y(t), X,]. Usually, £, depends mainly on ¥, and has little dependence on
y(t), thus X is merely constant in time and can be calculated using the initial observation y(0). The correction
procedure is equivalent to a modulation posted by a distribution with covariance matrix X, on a distribution with
covariance matrix ¥ ;. Suppose both distributions are Gaussian, the resulting distribution is also Gaussian but
with covariance matrix { EJTI + £;1}71. The resampling step does not change the covariance matrix, and the

regularization step simply adds a factor of 1 + h%. Thus we have X.(t) = {[Ef"l + 2713711 + A?). In the
steady state, we have ¥, (t) >~ ¥;(tx_1), leading to the following self-consistent equation:

B Bt = 40 (36)

which determines the covariance matrix of the samples, or the posterior pdf p[z(t)|y(0 : t)], for given dynamical
and observational noise levels. Note that X is a function of ¥, and ¥,,. For certain cases, ¥y can be expressed
explicitly in terms of ¥, and X, which can be used to further simplify the above equation. For example, for
linear dynamical systems, f = \/az + Vbu, Xy = aX; + b%,, Eq. (36) becomes:

(X, + b%,) ' + E71 = (1 + K2)E 1, (37)

From Eq. (36), the dependence of ¥, on ¥, and X, can be obtained, which can be used to identify the “leading
term” of the noise source, i.e., which noise term has the most influence on ¥, and therefore on the estimation
precision. This information can be useful for improving the estimation precision by suppressing the leading noise
source. In practice, due to the nonlinearity of function g, an explicit expression of ¥ is not always possible, and
a Monte Carlo scheme is viable, i.e., draw a set of samples {e;} from the distribution of e [Eq. (30)]; for each
sample e;, calculate z; as z; = g~ !(y(0),e;), then L can be approximated by the covariance matrix of the
samples {z;}.
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3.3.4 Robust sequential Monte-Carlo scheme for mitigating outliers

The above scheme of sequential Monte-Carlo simulation works well for stationary noise. In the presence of
nonstationary disturbances, e.g., outliers, the weight-updating scheme needs to be improved. To be concrete,
we treat outliers in the observation, which can lead to a larger covariance matrix ;. This will cause a larger
estimation error [Eq. (36)]. Thus, if the outliers can be detected and then discarded, the elements of the covariance
matrix of the observations can be reduced. Our idea is to first calculate the empirical distribution of the Monte-
Carlo samples, and then compare the observation with this distribution. If the prediction of the observation is
close to the center of the samples, the observation is likely to be true and it should be accounted for in the
estimation of the state. However, if the prediction deviates from the center of the samples, it is less reliable
and should therefore be counted less [71]. Quantitatively, it is convenient to introduce a contribution factor « to
characterize this effect. Let w;(t) = w;(tk—1)p[y(t)|zi(t)]. We modify Eq. (34) as

wi(t) = (1 — a)w;(te—1) + aizi(t)/z:ﬁj(t). (38)

3

Generally, the optimal value of o depends on the distribution of the samples and on the prediction of the ob-
servation in a sophisticated way. Our strategy for choosing « is the following. After propagating the samples
through the dynamical equation, we calculate ¥,. The covariance matrix X, of the dynamical noise and X, of the
observational noise are assumed to be known. Define 3 = /T (Z,)/Tr(Ze), Az = (z1s — (z))//Tr(Zz),
where (z) is the average of the samples, and s is the least-squares estimation of the state, which minimizes
the square error of the observations (this is the case when the number of observations is more than the number of
unknowns) [72]. We propose the following criterion for choosing a:

L laz] < e,
o) - ElE 2 46, o <lag) < e,

Bttt a < |az] < e

0, ez < || Az],

where ¢y ~ 1, ¢; ~ 3.5, co ~ 7, and the optimal values can vary for different situations. Note that ||Az|| is
the distance between the estimation z g obtained from the observations and the mean value of the samples (z),
normalized by the “standard deviation.” If || Az|| < 1, the estimation is within the range of the standard deviation
and is reliable. If ||Az|| is in the range of one standard deviation to three standard deviations, the observation is
less reliable. Since there is noise in the dynamics, the samples may themselves contain some error. The quantity
(3 is introduced to account for such uncertainties. If || Az|| is even larger, the weight for the observation decreases,
and at a certain point, say, beyond seven standard deviations, the observation is deemed as outliers and the weight
« is set to be zero.

3.3.5 Numerical support

To substantiate our ideas, we considered a synthetic two-dimensional GPS positioning problem of moving object,
say a car, by using GPS observations (see Fig. 14). The origin is the center of the Earth, and the car is originally
located at the surface of the Earth—(0, R.) in an Earth centered coordinate, where R, = 6357 km is the radius
of the Earth—which is assumed to be unknown. The velocity can be read from the velocimeter, and has a
constant true value of 70 mph, or 31.3 m/s. The velocity is assumed to have a Gaussian measurement error with
covariance matrix ¥, = o2 diag[l 1], where o, is regarded as an adjustable parameter. The direction of the
velocity changes in time. The car is equipped with a GPS receiver. Four visible satellites (ns; = 4) are located
at the altitude of 20200 km above the Earth surface with initial angles 7 /5, 7w /24, 47 /7, 2w /3 (in the Earth
centered coordinate). The satellites orbit the Earth at a period of 12 hours. The receiver on the car can receive
GPS signal from each satellite at the frequency of 1 Hz (At = tx — tx—; = 1 s), from which the distances from
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Figure 14: Setup of the numerical problem. (a) The tracks of the satellites and the car for the simulation time
(500 seconds). The satellites move counterclockwise. (b) The track of the car, where the origin is shifted to the
original position of the car.
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Figure 15: For the two-dimensional positioning problem, dependence of the standard deviations of the samples o,
for the two coordinates on the standard deviation of the velocity o,,. The standard deviation of the pseudoranges
is 0, = 2.5, the number of samples is N = 1000, and h = 0.3. Symbols are obtained from numeric simulations,
where each data is the average of 10 runs, and 100 different time steps for each run are used. The curves are from
the our theoretical prediction Eq. (37).
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Figure 16: A comparison of the errors of the first coordinate z; of the position prediction by velocity information
only (a), by least squares of GPS distances with outliers only (b), and by our strategy (c). The parameter values
used in the simulation are o, = 0.5, 0 = 2.5, ¢c9 = 0.7, ¢c;1 =4.2,¢c2 =7, N = 1000, and h = 0.3.

the satellites to the car P* (pseudoranges) can be measured. Assuming that the receiver has no clock offset and
the satellites are not correlated, we can write the covariance matrix of the pseudoranges as ¥, = a;“; I, where
I,, is the identity matrix of order ;. A motion model which is linear in the state dynamics and nonlinear in the
measurements is [59]

z(t) = z(tk-1) + v(te-1) - At,
y(t) = glz(t)] + ep(t),

where y is the pseudorange measurements y = [P' P? ... P™]T. The measurement function is g(z) =
[R! R? ... R™T, where R? = || X7 — z|| is the Euclidean distance from the car’s position x to the j'th
satellite X7, and e, is the pseudorange observational noise. The covariance matrices for v and ep are Xy, and X,
respectively.

Figure 15 shows the dependence of ¥, on ¥, when ¥; is given, which can be obtained numerically from the
distribution of the pseudoranges (3,). The symbols are obtained from direct simulations, the curves are from our
theory Eq. (37). They agree quite well.

To test the robustness of our Monte-Carlo strategy, we added 15 random outliers of 30 meters to the measured
pseudoranges of the second satellite in a time span of 500 seconds with measurement frequency 1 Hz. The result
of position estimation is shown in Fig. 16. Three cases are presented for comparison. Figure 16(a) shows
the prediction error of z; where the initial position is known and the measured velocity has standard deviation
o, = 0.5. There is a systematic drift of errors. Figure 16(b) shows the prediction error of the least-squares method
[72] if only the measured GPS pseudoranges are available (standard deviation o, = 2.5 for each satellite). Figure
16(c) is the estimation error from our proposed Monte-Carlo strategy, which apparently contains no systematic
error and exhibits much smaller statistical errors.

Next, we studied the cases with non-Gaussian noise in the GPS pseudorange observations. This might be
the case when the car is moving in a city or in the forests, where GPS signal may be blocked by the buildings
or the trees and causes difficulty to distinguish multipath signal from the original signal, which may introduce
systematic biases [2]. Furthermore, because of the complexity of the environment, at certain moments the original
signal may be unavailable. We assume that the distribution of noise in the pseudoranges consists of two Gaussians
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Figure 17: A comparison of the errors of the second coordinate x5 of the position prediction only by least square
of GPS distances with outliers (a), by regularized sequential Monte-Carlo simulation without the robust strategy
(b), and by our strategy (c). The parameter values used in the simulation are 0, = 1, 0, = 2.5, ¢g = 1.5,
c1 =4.2,cp =8, N =1000, and h = 0.3.

with different mean values. The probability density function is:

2 — 2

1 "Lz' 1 _(: )
z)=1b e 1 +(1-b e 2 | 39
fl@) V2mo, ( )\/27r02 &

where b is a weight factor and we take b = 0.6 in our simulation. Other parameters are 01 = 0, = 2.5, 03 = 1,
Tg = 8.

Again, to test the robustness of our algorithm, we added outliers to the GPS pseudorange observations: 20
outliers of 40 meters are added to satellite 2 randomly. Figure 17 compares the errors in position estimation
by three methods: the least-squares estimation from the GPS pseudoranges with outliers (a), the estimation by
the regularized sequential Monte-Carlo scheme (b), and by our robust sequential Monte-Carlo scheme (c). The
least-squares estimation from the pseudoranges has large errors and can have systematic deviations (the average
of the error is Not zero), as shown in Fig. 17(a). The regularized sequential Monte-Carlo scheme can remove
these systematic deviations caused by the non-Gaussian distribution but is affected by the outliers, which can
be seen from the spikes in Fig. 17(b). Our robust sequential Monte-Carlo scheme can recover from both the
systematic deviations and the outliers [Fig. 17(c)]. In fact, the average absolute value of the errors can be 30%
smaller.

The current robust scheme deals with observational outliers. If there are dynamical outliers—e.g. the outliers
appear in v—the current scheme needs to be modified to cope with the problem. Observations after such an event
will be needed to identify an outlier.

3.3.6 Discussions

In conclusion, we have obtained a self-consistent equation for the estimation precision of the Bayesian inference
in terms of the dynamical noise and the observational noise levels. The equation may provide insights into
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designing improved sequential Monte-Carlo simulations with higher precision. We also proposed a strategy to
deal with sudden, large disturbances that are inevitable in physical observations. The effectiveness of our method
has been tested numerically. While we used a standard kinematic GPS positioning problem to demonstrate the
working of our approach, it is general and applicable to signal-processing problems where outliers are present
and are to be mitigated. Sequential Monte-Carlo simulations have begun to be used widely in various estimation
problems in science and engineering. Our contribution provides a robust strategy for improving the estimation
precision when experimental observations are nonstationary or even temporally interrupted.
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4 Personnel Supported and Theses Supervised by PI

4.1

Personnel Supported

The following people received partial salaries from the AFOSR Project in various time periods.

e Faculty: Ying-Cheng Lai (PI), Professor of Electrical Engineering, Affiliated Professor of Physics
e Graduate Students

. Mayur Shah, MS, Electrical Engineering, 2/16/04-7/15/04

Suprada Urval, MS, Electrical Engineering, 2/16/04-12/31/04
Vinayak Kamath, MS, Electrical Engineering, 5/16/05 - 8/15/06
Anusha Rammohan, MS, Electrical Engineering, 5/16/05 - 12/31/06

Liang Huang, Ph.D., Electrical Engineering, 8/16/05 - 8/15/07

Theses supervised by PI as a result of the AFOSR support

. Mayur Shah, Electrical Engineering, August 2004. Thesis: Integer ambiguity resolution with GPS signals

in jamming environment.
Suprada Urval, Electrical Engineering, May 2005. Thesis: Antijamming of GPS signals.

Vinayak Kamath, Electrical Engineering, ASU, December 2006. Thesis: Signal-processing techniques for
antijamming with GPS signals and noise reduction in chaotic dynamical systems.

Anusha Rammohan, Electrical Engineering, ASU, May 2007. Thesis: Integer-ambiguity resolution in
global positioning systems using particle filters.

List of Publications

. M. Shah and Y.-C. Lai, “Performance of integer parameter estimation algorithm for GPS signals in noisy

environment,” pp. 166-174 in ION GNSS 17th International Technical Meeting of the Satellite Division,
Sept. 21-24, 2004, Long Beach, CA.

V. Kamath, Y.-C. Lai, S. Urval, and L. Zhu, “Empirical mode decomposition and blind source separa-
tion methods for antijamming with GPS signals,” pp. 335-341 in IEEE PLANS (Position Location and
Navigation Symposium), April 24-26, 2006, San Diego, CA.

. L. Huang and Y.-C. Lai, “Sequential Monte Carlo scheme for Bayesian estimation in the presence of data

outliers,” Physical Review E 75, 056705(1-6) (2007).

. L. Zhu, Y.-C. Lai, M. Shah, and S. Mahmood “Efficiency of carrier-phase integer ambiguity resolution for

precise GPS positioning in noisy environments,” Journal of Geodesy 81, 149-156 (2007).

. V. Kamath and Y.-C. Lai, “Empirical mode decomposition with applications to noise reduction and anti-

jamming,” in preparation.

. A. Rammohan, L. Huang, and Y.-C. Lai, “Integer ambiguity resolution using particle filters,” in prepara-

tion.
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6 Interactions/Transitions

There was an active collaboration with Drs. S. Mohamod and J. Murchison at Eglin AFB. The activities resulted
in one joint paper published in Journal of Geodesy.

During the project period, the PI gave two invited talks on GPS, in addition to talks at annual AFOSR Test
and Evaluation Workshops.

1. “Performance of integer least-squares method for ambiguity resolution with GPS signals in the presence of
noise,” Seminar, Tamasek Laboratory and Department of Physics, National University of Singapore, July
20, 2004.

2. “Empirical mode decomposition and application to antijamming with GPS signals,” Air Force T&E Days
Conference, Nashville, TN, December 8, 2005.

7 Past Honors

1. PECASE, 1997.

‘

2. Election as a Fellow of the American Physical Society, 1999. Citation: For his many contributions to the
Jfundamentals of nonlinear dynamics and chaos.
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